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INTRODUCTION

One of the most difficult and critical problem in the analysis of externally
pressurized gas bearings is that of analyzing the flow in the vicinity of

the point where the gas is fed into the bearing. The primeipal features of
this entrance flow are illustrated in Figure la, Gas is fed to the bearing
from a supply reservoir at pressure g; through an orifice into a circular
feeder hole in the top plate of the bearing. In passing through the orifice,
the static pressure of the gas is reduced to a value Pc at the point of the
vena contracta downsitream of the orifice. As the high velocity jet issuing
from the orifice impinges on the thrust plate at the bottom of the feeder hole,
some of the dynamic pressure of the jet will be recovered, so that the static
pressurenPr at the bottom of the feeder hole will be somewhat greater than Pcf
From the feeder hole the gas enters into the narrow clearance gap between the
two bearing plates, accelerating in velocity as it does so. Associated with
this entrance flow there will be another vena contracta point at which the
static pressure Pv will reach a minimum. Downstream of this vena contracta
the flow will decelerate and expand to fill the entire bearing gap. Due to
the turbulent dissipation associated with this expansion, the pressure re-

covered, P will be only a fraction of the pressure difference Pr - P

I A v
so that there will be a net pressure 'loss", P - PB, accompanying the en-
trance of the flow into the bearing clearance. At the point'rBin the bearing
clearance, laminar flow will have been established so that the pressure dis-
tribution in the rest of the bearing can be calculated from the Navier-Stokes

equations for laminar flow.

In addition to the physical situation described above, a more compli-
cated physical situation can arise when the mass flow rate through the bear-
ing is sufficiently great so that the flow in the entrance region of the bear-
ing clearance becomes supersonic. In this case, the transition to laminar
flow in the bearing clearance takes place via a normal shock or shocks as is
shown in Figure lb. Although this is a physically more complex situation than
that occurring when flow is everywhere subsonic, it is easier to treat analy-

tically as will be shown later in this report. First, however, we shall
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consider the problem of determining the feeding characteristics of hydro-
static bearings for the case of subsonic flow. In this discussion we will

consider the specific case of the circular thrust bearin

............. s ! 1g shown in Figure la

The results obtained, however, apply generally to any bearing in which there
is radial symmetry about the feeding hole and can be applied to the bearings
lacking such symmetry by appropriate geometrical averaging. The specific

application of the results to the NASA AB-5 bearing will be considered in a

separate section.

SUBSONIC ENTRANCE FLOW

The bearing region we will be considering in the discussion of subsonic en-

trance flow is the region fromr = 0 to r = shown in Figure la We shall

T
call this the feeding region. Since this rezion occupies generally only a
negligible fraction of the total bearing area, the details of the distri-
bution of pressure in this region are not important with respect to the load
carrying capacity qf the bearing. What is very important, however, is the
magnitude of the overall feeding pressure loss, PS - PB’ as a function of mass
flow rate m, bearing clearance h, and the geometry of the feeding region. This
is critically important because the magnitude of the pressure level throughout

the bearing is established, essentially, by the magnitude of P the down-

B’
stream pressure of the feeding region.

In the case where the diameter d, of the orifice hole is very small compared
with the diameter D and length L of the feeding hole, and the area a of the
orifice hole is small compared with Ao’ the flow entrance area for the bear-
ing clearance, then the overall feeding region pressure loss is due principally
to the orifice and can be readily determined. 1In this case the recovered

pressure Pr - Pciand the clearance entrance loss Pr - P_ would be negligible

B
compared with the orifice loss PS - PC.

If, on the other hand, the areas a and Ao are of the same order of magnitude,

then Pr - P_ will be comparable to PS - P_ and the overall feeding region

B B
pressure loss can not be determined by considering the orifice pressure loss
alone. Also, if the feeder hole dimensions D and L are comparable to the

orifice dimension d, then the recovered pressure Pr - Pc can be significant.




Generally speaking, the pressure loss Ps - PC occurring across the bearing

orifice can be easily predicted. For one thing, there are extensive emp-

irical data available for the mass flow characteristic of standard orifices.

Also, it is a fairly easy matter to calibrate particular orifices separate
from their assembly. On the other hand, to predict the extent of pressure
recovered downstream of a bearing orifice and to predict the pressure loss
for the flow entering the bearing clearance are relatively difficult tasks.
These quantities can not be theoretically calculated, and generally they
must be measured for the particular bearing assembly of interest. Since,
however, the ultimate objective of analyzing the feeder region of a gas
bearing is to be able to determine the relation between the overall feeding
region pressure loss and the mass flow rate, it is obviously more straight

forward to measure and correlate Ps - P, directly than to try to se-

B

- P ,and P_ - P_. One difficulty asso-
c r B

vs m is the question of whether

parately determine PS - PC, Pr

ciated with direct measurements of Ps - PB

these measurements can be meaningfully correlated in terms of the signi-~
ficant geometrical parameters of the feeding region. The rest of this
section will be devoted to deriving an equation which, it is hoped, can be
effectively used to correlate values of PS - PB vs m.

First, we write an expression for the orifice pressure loss PO - PC. This

can be done by writing the ideal isentropic equation for flow through an ori-

fice and multiplying this expression by an empirical vena contracta coeffi-

cient Y and an empirical "efficiencf‘coefficientTq . The latter coefficient

accounts for the fact that the actual flow would not be exactly isentropic.

1
Q/K K- /&
. 3
2o w7 EE(P\) ( 'f I:l - (-PL) K ] (1)
% I\ s K- Ps 4

mass flow rate _lbs/sec

The expression obtained is:

£
=
o
H
m
g
i

a = orifice area in 2
P_ = supply pressure 1b/in
Ps = supply density lbs/in3
. 2
P_ = static pressure at vena contracta 1b/in

ratio specific heats = 1.4 for air )
gravitational constant = 386 in/sec



From the viewpoint of physical understanding, Equation (1) is the best
way of relating the flow through the orifice to the parameters affecting
1"t

it. For simplicity, however, it is better to use the following 'working

equation for compressible flow through an orifice

el =/.¢3aKY/_/_?_ P -P (2)
9. "\ i(S <)

The factor K in Equation (2) is the vena contracta orifice coefficient for
N

incompressible flow while Yl, called the cxpansicon factor, is an empirical
factor to adjust the equation for compressible flow. For square edged

orifices K is usually about 0.61 while Y, is a function of the pressure

1
ratio across the orifice, varying between 1 for PC/PS = 1 to about .87 for

P /P = 0.6.
(o] s

Next we consider the pressure recovered as a result of the high velocity
orifice jet impinging on the bottom thrust plate of the bearing. This can

be expressed in terms of a recovery factor r defined by

P - Pc (3)
Ps - P

r, in general, will depend in some complex way on the dimensions L, D, and

r

i

d and probably also upon the ratio PS/PC. For fixed geometry it could be

determined as an empirical function of mass flow rate.

Finally, we consider the pressure loss Pr - PB associated with the flow enter-
ing into the bearing clearance. As discussed earlier, this pressure loss
occurs as a result of the dissipation of the kinetic energy of the entering
flow into heat by turbulence. This pressure loss should, therefore, be
able to be expressed in terms of an empirical factor, ZZ, multiplying the
dynamic pressure of the flow entering the bearing clearance. That is

R-f = Z B

2 I P A,

The density /3 to be used in Equation (4) should be the density of the

(4)

flow at the point of maximum pressure (point of vena contracta). However,

for convenience, the value /9 can be used in Equation (4) and the difference
B




accounted for in the empirical factor ZZ. One should note that the area
A in Equation (4) should be multiplied by some coefficient to take account
of the vena contracta effect in the entrance to the bearing clearance.

This coefficient is also included in the value of ZZ, which could result

in Z2 having magnitude greater than 1.

Combining Equations (2), (3) and (4) we obtain an expression for m in

terms of P - P_.
s B

/ o
&

= J.43a kY, s_c(@’ )
/l-—Yi—-(ZK\/')a (%’;)a,—f‘;

Equation (5) can be used to correlate experimental measurements for m vs

L 4
m
gc

(5)

PS - PB. In using Equation (5) one would generally evaluate the orifice
coefficient KYl by separate experimental measurement on the orifice alone.
This would then leave the two coefficients r and Z2 as adjustable para-
meters to fit Equation (5) to the data for m vs Ps - PB.

APPLICATION OF FEEDING REGION ANALYSIS TO AB-5 BEARING

The geometry of the NASA AB-5 bearing is such that the overall pressure
loss in the feeding region should be influenced significantly by the
effects of pressure recovery in the feeder hole and pressure loss in the
entrance region to the bearing clearance. However, in the analysis of
the AB-5 bearing recently performed by MII (Ref.l), the overall feeding
region pressure losses were assumed to be those due to the orifice alone,
an assumption made necessary by the lack of knowledge concerning the
actual feeding characteristics of this bearing. With the above simplifying
assumption, matching feeder region downstream with the upstream pressure
at the start of the laminar clearance flow required using the unrealistic
procedure of matching the pressures at a point that was actually within
the feeder hole. It was concluded by MTI that to further improve the
analysis of the AB-5 bearing, it would be necessary to take more accurate

account of the behavior of the flow in the feeding regions of this bearing.
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To try to obtain some idea of the relative magnitude of the different
pressure losses in the feeder region of the AB-5 bearing, an attempt

was made to apply equation (5) to available experimental data on the

AB-5 bearing. This was done in the following way. From the NASA data
2588-10, -12, -14 and -16 particular operating conditions of mass flow
rate and bearing clearance were selected. Corresponding to each mass

flow rate and clearance a particular value of the orifice source strength,

C, was calculated. C is defined in Reference 1 as

e m i3
S TR Bk

Given a value of C, the laminar flow pressure profile in the bearing
could be determined by the MTI analysis presented in Reference 1. In
particular, Figure 16 in this reference gives values of, Pi’ the pressure
in the bearing clearance at the edge of the orifice feeding hole, from
which one could obtain Ps - Pi’ the overall pressure loss across the

feeding region.

When values of P, were determined in the above manner, it was found that

for small clearances,( h £6x iBL‘m, , the values of Pi were greater than

the supply pressure. In view of the generally excellent accuracy of
theoretically predicted pressure profiles for gas bearings with laminar

flow, it is believed that the unreasonably large value§ obtained for Pi

were the result of error in the measurement of either m or h. Some

evidence supporting this belief . is provided by the fact that the pressure
profiles calculated by MTI analysis agree exactly with the pressure profiles
measured, by NASA if one assumes a va}ue for C which is less than that corres-
ponding to the NASA measurements of m and h. In any case, the fact remains
that reliable values of the pressure loss across the AB-5 feeding regions
cannot be obtained from the presently available data on this bearing. Since
it is of demonstrated importance to know the AB-5 feeding characteristics,

it is recommended that specific measurements of the overall pressure loss over
the feeding region be made for the AB-5 bearing at different mass flow rates,
pressures and clearances and that equation (5) be used to correlate the
measurements. An experimental program for the purpose is outlined in

Appendix A.



SUPERSONIC ENTRANCE FLOW

re

We now turn our attention to the case in which supersconic flow occurs
in the bearing clearance For ease in discussing this phenomenon, we
will consider the specific case of a circular thrust bearing such as
is shown in Figure 2. However, the physical concepts discussed will
apply, in general, to all externally fed bearings. To gain an under-
standing of the conditions under which supersonic flow will occur in
the entrance region of a bearing, let us consider what happens to the
flow through the circular thrust bearing shown in Figure 2, when the
ambient Pressure Pa at the exit of the bearing issteadily reduced
while the feeder hole supply pressure PO and the bearing clearance h
are kept constant. The first curve (curve 1) shows a situation in
which Pa is only slightly less than Po. In this case the flow is sub-
sonic everywhere and the pressure distribution has the following chara-
cteristics. There is a decrease in pressure to the point a,, corres-
ponding to the acceleration of the flow entering the clearance. Down-

stream of a,, the flow rapidly decelerates and some of the dynamic

1’

pressure of the flow is recovered. At the point b the dynamic pressure

1’
of the flow is negligible and laminar flow is established in the bearing.
Downstream of bl the pressure distribution curve is that corresponding
to laminar flow.

, .
As the exit pressure Pa is steadily lowered below the point Cl’ the
mass flow rate through the bearing increases until the point is reached

where the pressure at a, in the inlet to the bearing clearance is 0.528

times Po, the feeder hoie pressure. At this point, the flow in the in-

let to the bearing clearance will be at sonic velocity and the flow will
be "choked” , that is, the maximum flow rate corresponding to the given

Po and flow entrance area will have been obtained, Downstream of the

point a., the flow still decelerates subsonically, recovering some of the

2
dynamic pressure of the flow, until laminar flow is established.
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Now, if the bearing exit pressure is reduced still further below that

corresponding to point b the mass flow and the pressure at the point

2°
a, will both remain unchanged. However, in order that the exit pressure
condition be satisfied, the flow downstream of the point a, must now
become supersonic and its eventual transition to subsonic laminar flow
must now take place by means of a normal shock. This situation is
illustrated by curve a2b3béca. From a, to b3 the flow is supersonic.

At b3 a normal shock occurs and the pressure increases discontinuously

to the point bé. From bé to C, the flow us subsonic and laminar.

As the exit pressure is reduced still further below the point C3, the position
of the shock in the bearing clearance will move steadily toward the bearing
exit as indicated by the dashed line aZbBbAbA 4 When the shock reaches
the bearing exit, the entire flow in the bearing will be supersonic and
further decrease in exit pressure will have no effect on the pressure
distribution in the bearing. The pressure distribution for this final
situation is indicated by the dashed line a2b4C5.

Although the flow in a bearing is more complex when supersonic flow occurs,
it actually is much easier to analytically calculate the performance of
bearings under these conditions than when the flow is entirely subsonic.
The reason for this is that under supersonic flow conditions, the mass flow
rate is determined by the sonic conditions at the minimum corss-section,
flow area in the bearing i.e. at the entrance to the bearing clearance.

Theoretically, this mass flow rate is given by Fleigner's formula (Ref.2).

m = o0.53a2 B A, )
v To
where P0 = Feeder hole stagnation pressure PSIA
To = Feeder hole stagnation temperature °r
A0 = Flow cross-section area at bearing clearance

entrance in




If the mass flow rate through the bearing is known, then the pressure
distribution in the laminar flow region downstream of the shock can be
readily calculated. Also, as will be shown later, the pressure distribution
in the supersonic flow region appears to be predicted remarkably well by
means of the equations governing one-dimension adiabatic flow in ducts with
friction and area change. The only details of pressure distribution which
cannot be readily predicted are the details of the pressure rise through

the shock system in the bearing. This shock system, however, generally
occupies only a small fraction of the radial distance in a bearing, and thus
the details of pressure distribution associated with it are not too im-

portant with respect to the overall load characteristics of the bearing.

Let us now consider the equations by which the pressure distribution in a
bearing can be calculated under conditions of supersonic flow in the en-
trance region of the bearing. First, it is assumed that at the very en-
trance to the bearing clearance, i.e. at the point of minimum area for the
flow, the flow is at sonic velocity. Furthermore, it is assumed that the
acceleration of the flow from stagnation conditions in the feeder hole to
sonic conditions at the bearing entrance takes place isentropically. This
assumption establishes that the pressure at the bearing entrance would be
0.528 times the stagnation pressure in the feeder hole. This result is
obtained from the equations governing one dimensional isentropic, compress-

ible flow.

Once in the bearing clearance, the flow continues to accelerate to a super-
sonic velocity.In analyzing this flow it is assumed that it is adiabatic

and that it can be adequately described as a one dimensional flow. The
latter assumption is probably reasonable since, for practical bearing
clearances, the flow in the supersonic region will be turbulent. .The
assumption of adiabatic conditions is more questionable, since the bulk
static temperature of the flow with no external heat transfer will be very
much lower than the bearing temperature. However, frictional dissipation in
boundary layer of the flow will create a region of high temperature near the

bearing surfaces which would limit the heat transferred to the flow from the

~10-

the

bearing. The net effect could very well be a nearly adiabatic flow condition.
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With the above assumptions, the equations governing the supersonic flow

in the bearing are:: _
e
4P - _km® IA_ km® [ (x-1) M* ] Fr"/."JB dr

P (-m3) A 2(1- M’)

&)

K-1 a2 .2 K-1 & _
dM& - -;(I+TM) dA +hM (HTM)P% dr (8

M (-m%) A T(imxy B

where
M = Mach Number
DB =  Hydraulic diameter in bearing clearance
f = Friction factor for turbulent
A = Flow cross section area in bearing
r = r/r
o]
r0 = radial point at which minimum flow cross section

occurs (sonic throat).

To obtain the pressure distribution in the supersonic flow region, it is
first necessary to_integrate Equation (8) to obtain values of MZ which then
can be used in Equation (7) to obtain values of P. One can note that, for
M > 1, the effect of a radial increase in flow area is to increase the flow
Mach Number and decrease the static pressure while the effect of friction is
exactly opposite to this. Equations (7) and (8) were integrated for four
different values of the parameter fig . The results are shown in Figures 3

and 4. DB

Unless the stagnation pressure in the feeder hole of the bearing is extremely
high or bearing clearance is very large, the supersonic flow in the entrance
region of the bearing clearance will eventually go through a transition to
subsonic laminar flow. Although, in actuality, this transition takes place

by means of a complicated system of oblique and normal shocks, it can, for
analytical purposes, be considered to take place by means of a single normal
shock. Py, the static pressure obtained following the normal shock is expressed
in terms of Mx and Px’ the Mach Number and pressure preceding the shock, by

means of the following equation -
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By means of Equation (9), a curve of Py vs. T can be obtained corresponding
to each of the curves of P vs. r for supersonic flow shown in Figure 4.
These curves of Py’ labeled recovery curves, are shown in Figure 4. They
give the initial value of the static pressure for the subsonic, laminar flow

downstream of normal shock occurring at different values of T.

If the subsonic, laminar flow in the bearing is assumed to be isothermal,

and if inertia effects are neglected, then the pressure distribution for

subsonic laminar flow can be calculated from the expression:

o . 2y m R T
Py~ P = /34 e la R
7 43 In r (19)

= Mass flow rate lb/sec

where
lb-sec

. 2
in

= Viscosity at ambient temperature

Ambient Temperature-oR

I I~ -
I

= Gas constant -in/o
C R

=
I

Bearing Clearance =-in.
=  Radial of bearing - in.
2

Pa = Ambient Pressure - 1lb/in

As noted earlier, m, the mass flow rate through the bearing, is determined by
the condition of sonic or ''choked" flow at the entrance to the bearing clear-

ance and is given theoretically by Fleigner's formula

m = 0.5-3RPvo (11)
JTo

Now, Equation (10) is derived by neglecting the inertial terms in the equations

14~

of motion for viscous laminar flow. In close to the center of a circular thrust

bearing, however, inertial effects can have a significant effect on the pressure

gradient accompanying the flow. This effect can be important when one is

attempting to match the calculated static pressure in the laminar flow regime
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to the calculated pressure downstream of the shock tramsition from super-
sonic to subscnic flow. To sclve the equations of motion with both the
viscous and non-linear inertial terms included is a very difficult task.
One can, however, obtain a first order inertial correction to equation (10)
quite easily by means of the following procedure. Assuming a parabolic
velocity distribution across the bearing clearance and uniform pressure

across the clearance, and letting Vm represent the mean velocity in the

radial direction, the pressure gradient in the radial direction due to

d (Vm
(;Lrp-)mertt: - aﬁ‘(]‘; cl(r\m ) (12)

where the factor 1.2 is obtained as a result of the parabolic velocity
distribution. The difference in pressure between the point r and R which
arises because of inertia effects can be obtained by integrating equation (12)
between those points. Using the mean value theorem of integral valculus we

obtain for the integral of (12)

[P(»)- Pm:] = - 0.6-3’3: [\/ma(r) - \/ma(R) (13)

inev ol

where /D is some mean value of the density between the points r and R.

Equation (13) can now be used to obtain a first order inertial correction to

the pressure distribution given by Equation (10). The procedure is as follows.

Vi (R) is calculated exactly since the mass flow rate through the bearing is

known and the density at R is the ambient density. Next, Vm(r) is calculated
approximately by assuming that the pressure at r is that predicted by Equation
(10), the density at r being determined from the pressure by means of the con-
dition of isothermal flow.  Now, ,'5_ the mean value of density in Equation (13),
must lie between the maximum and minimum value of A in the region between r and

R. The minimum value ofp is @ . The maximum of /-7 will be approximately

the value of P at r. Corresponding to these maximum and minimum values of

o . . o . . _ ) .
ne can obtain maximum and minimum first order evaluation of [P(r) Pa]lnertla.



It should be obvious from the way in which the above inertia correction is

calculated that it will be accurate only when the correction amounts to a

small percentage of the uncorrected pressure. In all cases, however, the
correction does provide a simple way of estimating the magnitude of the

effect of inertia terms on the laminar flow pressure distribution, and un-
L]
doubtedly the correction always does bring the purely viscous pressure dis-

tribution closer to the exact pressure distribution.

In the ahove paragraphs are briefly presented the equations and procedures

for the calculation of pressure distribution in a circular thrust bearing

with supersonic flow. The analysis is not new or original but is, basically,

the approach suggested by Mori (Ref.3) for analyzing the supersonic pressure
depression in externally pressurized bearings. One difference between the
analysis presented here and that presented by Mori is the use in the present
analysis of computer integrated supersonic flow equations. A second difference is
the suggested first order inertial correction for the pressure distribution

in the subsonic flow regime.

In order to see exactly how the above equations are used, let us consider a
sample problem. Let us calculate the pressure distribution for the circular
thrust bearing shown in Figure 5 under the following conditions with air as

the lubricant.

R - Radius of bearing - 3 in.

r, - Radius of feeder hole - .0625 in.

h - Bearing clearance - .004279 in.

A0 - Flow area at entrance to bearing = 2 roh = 1.68;;10-3 in
P0 - Stagnation pressure in feeder hole = 85 psia

To - Stagnation temperature in feeder hole = 540°R

Pa -  Ambient pressure 14.7 psia

Ta - Ambient temperature 540°R

At present, we shall simply assume that the above conditions would result in
supersonic flow in the bearing. Later there will be discussed a simple criterion

which can be applied to indicate whether supersonic flow is or is not likely to
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occur under a given set of conditions. In any case, if one assumed super-
sonic flow to occur, the resulting calculation would indicate whether the

assumption is correct.

The first thing to be calculated is the Reynolds number for the flow in the
bearing clearance. At the entrance to the bearing clearance it is assumed
that sonic conditions are reached isentropically. Therefore, conditions at
this point can be calculated from tables of one dimensional isentropic com-

*
pressible-flow functions

We get -

M = 1
T = .8333T = 450°R
V = 1040 ft/sec.
P = .63/ =0.27 1b/f£e>
L = 1.075 x 10™° 1b/sec.ft.
D = 2h=.713 x 107> ft.
PVD = 1.85 x 10°
K

Now, in the bearing clearance the quantity R Vr is a constant. Therefore RV
varies as 1/r. However, with supersonic flow, the temperature of the flow,

and hence u, decreases with r. Therefore, one can say that the Reynolds Number
decreases in the bearing clearance at a rate somewhat less than 1/r. Since f,
the friction factor, depends on Reynolds Number to only approximately the

minus one-fourth power, one can reasonably consider the friction factor to

be constant over a range for which the radius changes by only a factor of

two or three.

Based on the Reynolds Number calculated above for flow at the bearing entrance,

the friction factor f is determined from standard plots of f vs. N to be

Re
f = .026 (14)
from which we get
fro = 0,19 @ 0.2 (15)
D

* for example,Reference 4.




Referring to Figure 4, where solutions of equations (8) and (9) are plotted
for various values of fro, we obtain our solution for the pressure distribution

D
in the supersonic flow region for the case fro/D=0.2. We also obtain the

corresponding curve for P&, the recovered pressure following a normal shock.

These two curves are plotted in Figure 5.

Next one calculates the mass flow rate through the bearing. This can be done
using Equation (11) or can be done directly from the already calculated values

for p and V at the bearing entrance by using the relation

-3 b
m = ﬁ\/ RIT "A = 3.2¥YXx10 /Sec. (16)

Using this value of n in Equation (10) together with the appropriate value of

p for air at ambient temperature we get

PP = 216 + 14% In K/, an

Equation (17) gives the pressure distribution in the laminar regime downstream
of the normal shock neglecting inertia terms. This distribution is plotted

in Figure 5. The first order imertia correction for this pressure distribution
is obtained from Equation (l3). The calculations are as follows. First “n(R)

is determined from the relationship

L4

/2 VM(R) 2amR = m

-2
3.28 X 16 '"Yher (1

from which we get
_ FT
V,,(RY = 158 /sec (19)

Next, V(r) is calculated in the same way, i.e.
m

N (v agr = m = zasxic Ysec (20)



PSIG

-19-

FEST BEARING
CONFIGURATION

vood s

~0625"

V777777777
RADIUS .0312

J TSI //|
4

70
() LAMINAR CURVE WITH MINIMUM
INERTIAL CORRECTION
60 (b) LAMINAR CURVE WITH MAXIMUM
.47 FRANKLIN DATA INERTIAL CORRECTION
/ ROUNDED ENTRANCE
H =0.004279
40}
30 \
\
\
20 A
\ N\ \/»SUPERSONIC FLOW
\ LRECOVERY CURVE
10| |
N——]_<]-LAMINAR SUBSONIC CURVE
~ {a)w —T
prIrirr S e ﬁTz?zzz
0 ¥ S (b)”
! N 1" PREDICTED POSITION
I T~ 81 FIOR N([)RMA;. SHj)CK
- 1O :
% €00 200 300 200
l

FIG. 5 SUPERSONIC

RADIAL DISTANCE - THOUSANDTHS

PRESSURE DISTRIBUTION




The value of p(r) is obtained from the values of P(r) given by Equation (17).
For example at r = .300 in., p(r) from Equation (17) is 21.3 psia.

Since
A P
Pou P(V‘) (21)
we get -
L)y = g. /05 /%23 (22)

Substituting /9 (r), m and r in (20) we get

vm (/‘) = 55 L{ P%E,C J. r= ,30 I.f) (23)

Other values of Vm (r) are obtained in the same way. To evaluate the minimum
. . . —_ . 1b .
value of the inertia correction we use the value r = /0' =,0735 = in
a ft

equation (13) to get

[Per=e) P | = -2 e

inerTial

(minimum correction) (24)

To evaluate the maximum value we use ;; = /O (r=.3)= 0.105 1b/£t3  in equation
(13) to get -

LP CV‘=.3) - PC;I = T3 Psi (maximum correction) (25)
inerTra

The corrections are applied by adding them to the initial value of P(r) obtained
neglecting inertia terms. The two corrected curves of P(r) are shown in

Figure 5. The area between the two curves is filled in with single-hatched
shading and represents the region in which the actual pressure distribution

would be predicted to lie.

Finally we come to the prediction of the point at which the normal shock would
occur in the bearing. In order that the supersonic flow region by correctly
linked to the subsonic flow region, the normal shock should occur at the point
where the inertia-corrected subsonic pressure curve intersects the recovered

pressure curve. Since the former curve is given as a bounded region. The
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predicted position for the normal shock will also be determined as a region.

This region is shown filled in with cross-hatching in Figure 5.

From the above analysis, the total predicted pressure distribution for the
case under consideration would be as follows. From the point r = r, to the
region between r = .227 in. and r = .240 in., the pressure would follow the
supersonic flow curve. In the region between r = .227 in. and r = .240 in.

a normal shock should occur and the pressure should jump up to the recovery
curve. Downstream of this the pressure would lie in the single hatched region

i.e. the predicted region for laminarsubsonic flow.

CRITERIA FOR DETERMINING IF SUPERSONIC FLOW OCCURS IN AN EXTERNALLY
PRESSURIZED BEARING

Determining if supersonic flow will occur in an externally pressurized bearing
involves, essentially, determining whether a solution of the kind just calcu-
lated above exists for the flow through the bearing. To put it another way,
supersonic flow will exist through the bearing if the pressure curve for
laminar, subsonic flow in the bearing and the pressure curve for supersonic
flow in the entrance to the bearing can be joined by means of a normal shock
relation. Referring to Figure 5 we see that this joining of the subsonic
and supersonic flow regions will be theoretically possible if the subsonic
flow curve intersects the recovery curve which gives the downstream pressures
following a normal shock in the bearing clearance. Developing an exact yet
simple criteria for when this occurs, however, appears impossible. The principle
difficulty lies in the fact that, in order to calculate the subsonic flow
pressure distribution in near the center of a circular thrust bearing, it is
necessary to take account of inertia effects. In very close to the center

of such a bearing, a first order corrections for these inertia terms suggested
above would no longer be adequate. Solving the exact Navier-Stokes equations

with inertia term included, however, would be a very complicated task.

Although an exact yet simple criterion for the existence of supersonic flow

in the bearing may not be possible, it would still be of considerable use to




have a rough criterion to indicate whether one is near the region of
supersonic operation. In the following paragraphs there is developed

a rather simple yet conservative criterion to indicate whether a bear-

ing is still securely within the region of entirely subsonic operation.
This criterion is based on the following physical reasoning. Basically,
supersonic flow will not occur in an externally pressurized bearing when
the difference between the supply pressure in the feeder hole and the exit
pressure is less than the pressure drop attainable through the bearing with
entirely subsonic flow. Now, it can be shown that for a fixed mass flow
rate, the pressure drop through the bearing neglecting inertia terms will
always be less than the pressure drop calculated including inertia terms.
Combining the above two inequality conditions, it follows that if the diff-
erence between the feeder hole pressure and the ambient pressure is less
than the pressure drop through the neglecting inertia terms assuming a
"choked' mass flow rate, then flow in the bearing will be entirely
subsonic. This is the criterion suggested for predicting a conservative
limit to subsonic operation. This criterion can be expressed in algebraic
form in the following way. The calculated pressure drop through the

bearing neglecting inertia terms is obtained from Equation (10).

S
/Rt ”w f'?-_ To. [ of /2

For "choked" flow m is given by Equation (11).

m = 0.53&8 R A, 27)
/Ts

Now, our limit for subsonic flow operation is taken to be the point at which

130“ Pa, = ‘P(rc)-— POL_- (28)

where P(ro) is calculated from Equation (26) combined with Equation (27).
Equations (26), (27) and (28) taken  together serve to define a value of

(Po)critical below which subsonic flow should occur. Solving (26), (27)
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and (28) for (Po)Critical we get
]
E = +
(' )cm_ﬁco_i (b V/dl> + PO’" (29)
whenre q> = /2o (0.5397) r- R, ’l; ln VF\’ (30)
2 <
h /-ro
We can now define an index N as
B - R
N = ,;\ > = (31)
\lo certTreo| a

so that our criterion for subsonic flow becomes:

N €1 Bearing has subsonic flow
throughout.
N > 1 Flow may be supersonic in

part of bearing.

As noted above, the criterion that N be less than unity for subsonic flow
is a conservative one. From experimental evidence to be discussed shortly,
it appears that Nc’ the value of N for which supersonic flow will actually

occur in a bearing, lies somewhere in the range
rr28 < N < .76 (32)

Therefore, our criterion does not appear to be so conservative as to be
uesless. On the other hand, it is firmly believed that supersonic flow
will never occur in a circular thrust bearing under conditions for which

N is less than one.

COMPARTISON OF THEORY WITH EXPERTMENT

In Figures 5,6 and 7 the supersonic flow theory outlined in the previous
pages is compared with some unpublished experimental data taken in 1958
at the Franklin Institute Laboratories in Philadelphia under ONR Research
contract Nonr - 2342(00). The data were taken on a circular thrust

bearing of three inch radius having a rounded entrance hole as shown at
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the top of Figure 5. The minimum flow area (sonic throat) occurs at

the point r, = 0.625 inches.

The data are considered to be preliminary in nature as the Franklin
Institute is in the process of reproducing and expanding the data on
a redesigned test rig. However, these preliminary measurements appear
to have been made with exceptional care and accuracy, and the writer

is indebted to Mr. John T. McCabe of the Franklin Institute for grant-

s

ng permission to the writer to show the data.

The theoretical calculations and the experimental measurements in
Figures 5 through 7 are in generally excellent agreement. Particularly
striking is the very close agreement in the region of supersonic flow.
The theoretical supersonic flow curves shown in these figures well all
calculated by using a constant friction factor based on the Reynolds
Number at the entrance to the bearing. A comparison of the curves in
Figures 5 and b reveals that the value of the friction factor does have

a significant effect on the pressure distribution curves.

The experimentally measured pressure rise from the supersonic flow curve
to the subsonic flow curve is seen to take place over a radial distance
of about 0.1 inches rather than abruptly and discontinuously as would

be predicted for an ideal normal shock. This indicates that the shock
system in the bearing probably consists of a series of partially oblique
and partially normal shocks rather than consisting of a single normal
shock. This would be expected to occur,since a single normal shock
would interact with the boundary layer in the bearing giving rise to
oblique shocks. In any case, the predicted location for a single normal

shock to occur does lie within the range over which the actual shock

system appears to be spread.

Downstream of the shock system, the measured laminar subsonic pressure
distribution is seen to agree in all cases with the predicted subsonic

pressure distribution including the first order correction for inertia.
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This indicates that the flow rate through the bearing is correctly
predicted by expression (11) and also that the first order correction
for inertia is fairly accurate (if the correction is small
connection with the use of expression (11) to predict '"choked' mass
flow rate, it was also observed by P. F. Carrothers (Ref. 2) that
this expression was in agreement with experiment to within 3% in the

case of circular thrust bearings with sharp edged entrance regions.

Of the various pressure distribution curves measured at the Franklin
Institute, only two appeared to be near the condition where supersonic
flow was just starting to occur in the bearing. This condition would be
characterized by a pressure distribution curve which decreased to

0.528 Po at the entrance to the bearing and then immediately began to
increase again in the bearing clearance. One of the Franklin curves,
corresponding to all subsonic flow, decreased to a value of 0.65 Po at
the bearing entrance, which corresponds to an entrance Mach Number of
0.8. For this condition the calculated value for N was 1.28. A second
of Franklin's curves decreased to a minimum value of .435 Po in the
entrance region of the bearing. This corresponds to an estimated Mach
Number of 1.1. The value for N in this case was 1.76. For the Franklin
Bearing, therefore, supersonic flow would apprently -

N somewhere in the range 1.28 < N, < 1.76.

APPLICATION OF SUPERSONIC FLOW THEORY TO AB-5 BEARING

The discussion of supersonic flow in bearings presented thus far has re-
lated specifically to the case of a circular thrust bearing in which

there was radial symmetry about the feeder hole. In the case of the NASA
AB-5 bearing, none of the orifices is positioned so as to have a radially
symmetric geometry about it. However, in the analysis of this bearing by
MTI, it was found that the calculated pressure and flow distributions for
the bearing did demonstrate a considerable degree of radial symmetry in
the vicinity of each orifice. On the basis of this finding, therefore, it

appears that the analysis of supersonic flow pressure distribution presented
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above for a circular thrust bearing could be applied directly to the
NASA AB-5 bearing without incurring very much error, provided the
supersonic flow regime did not extend too far from each orifice i.e.
beyond a distance of, say, 0.25 inches from the orifice. It should
be realized, however, that the pressure distribution in the subsonic
laminar regime for the AB-5 bearing would not be given by equation
(10) but would be obtained from the MTI computer program for the

AB-5 bearing with point source feeding. Normally, this program

[«¥

etermines the mass flow rate from each orifice as part of its cal-
culation duties. In the case of supersonic flow through each orifice,
the mass flow rate is fixed by the condition of ''choked" sonic flow

at the entrance to the bearing. Therefore, in this case, the MTI
computer program would simply calculate the subsonic flow pressure
distribution in the AB-5 bearing using the given mass flow rates for
each orifice. Unfortunately, in its present form, the MII computer
program cannot calculate pressure distributions for a "mixed" operat-
ing condition, i.e. one in which some orifices are feeding with sub-

sonic flow and some orifices are feeding with supersonic flow.

Considerable difficulties remain in calculating the performance of the
AB-5 bearing under supersonic fiow conditions, even using the simplified
approach suggested above. One difficulty is that of calculating the
“"choked' mass flow rate through each orifice. This can be done by using

Equation (6 )i.e.
N Pe AQ

m = 053X (33)
J To

In using expression (33), however, the problem arises as to how

to determine the proper value for Po' Po is the stagnation pressure

in the feeder hole. To determine this it is necessary to know not only
the mass flow vs pressure difference characteristics for the bearing
orifices, but it is also necessary to know the extent to which the dyna-
mic pressure of the flow through the orifice is recovered in the feeder
hole. As noted earlier in this report, the extent to which pressure is

recovered in the feeder hole can only be determined experimentally.
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Assuming that the stagnation pressure in each orifice feeding hole can

be determined as a function of mass flow rate, the total calculation

of pressure distribution in the AB-5 bearing under supersonic flow
conditions would involve the following steps. First, the mass flow rate
through each orifice would be determined using Equation (6 ) plus the Po
vs m relation for the orifice. Determing m in this way would probably
require several iterations. Next, the supersonic pressure distribution
around each orifice would be determined. To do this it would be necessary

to evaluate the parameter fr If the journal is eccentrically located

o
within the bearing, then it ignsuggested that a linear average of the
clearance at the rim of the feeder hole be used to obtain a value for D.
In calculating the supersonic pressure distribution around an orifice,

it is assumed that the flow pattern is radially symmetric in the vicinity

of each orifice so that the curves presented in Figure 4 could be used.

With the mass flow rate from each orifice known, the subsonic flow pressure
distribution throughout the bearing would be determined from the MII ana-
lysis of the AB-5 bearing with point source feeding. It should be noted
that this analysis assumes that laminar flow exists right up to the edge

of each orifice feeder hole. However, it seems likely that the flow

r
cr
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soul iearly
regardless of whether supersonic or subsonic flow were occurring in the
immediate vicinity of each orifice. This conclusion is based on the fact
that the mass flow distribution tends to be radially symmetric in the
vicinity of each orifice under subsonic, laminar flow conditions and would
be expected to tend to be equally symmetric under supersonic, turbulent

flow conditions.

The calculated pressure distribution in the subsonic and supersonic regions
of flow in the AB-5 bearing would be joined or matched at the points at
which the subsonic pressure curves intersect the supersonic recovery curves
(see Figure53 ). The extent of radial symmetry of pressure in the subsonic
flow regime at these radii would give an indication of how reasonable the

assumption of radial symmetry was for the supersonic regime.
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SUMMARY AND CONCLUSIONS

The total pressure 'loss" occurring in the entrance region of an ex-
ternally pressurized gas bearing is a complicated phenomenon consist-
ing of loss due to the feeding orifice, loss due to imperfect re-

covery of the flow dynamic pressure in the feeder hole, and loss asso-
ciated with the flow entering the bearing clearance from the feeder
hole. These losses cannot be predicted exactly analyticallys however,

a semi-empirical equation was derived which relates the total pressure
loss over the entrance region to the mass flow rate through the bearing.
The application of this equation to the AB-5 bearing is discussed, and
some experimental measurements are recommended which, when correlated by
means of the above mentioned equation, should serve to determine the feed-
ing characteristics of the AB-5 bearing. These recommended measurements

are described in Appendix A.

The phenomenon of supersonic flow occurring in the entrance region of a
externally pressurized, circular thrust bearing appears to be susceptible

to quite accurate analytical prediction. The mass flow rate through the
bearing under these conditions appears to agree quite closely with that
predicted assuming ''choked' (sonic) flow at the entrance to the bearing
clearance. Also, the pressure distribution in the supersonic region seems
to be predicted very well by the equations governing one-dimensional com-
pressible flow in ducts with friction and area change. One complication
that arises when analyzing supersonic flow in bearings is that in the sub-
sonic flow regime just downstream of shock transition, inertia forces may
still be quite significant in the flow. A first order correction to account
for these was suggested in this report. This correction appears to be fairly
accurate provided it does not amount to more than say, 107 of the calculated

pressure.

For bearings other than circular thrust bearings, the problem of analyzing
supersonic flow operation is made considerably more complicated by the

lack of geometrical symmetry about the feeding holes. However, it appears
that even in non-circular bearing geometries, the flow fields tend toward
radial symmetry about feeding holes. Therefore, it is concluded that super-
sonic flow analysis presented in this report can be applied directly to the
AB-5 bearing geometries provided the supersonic flow regions are confined to

the immediate vicinity of the feeding holes.
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APPENDIX A

Experimental Measurements to Determine AB-5 Bearing Feeding

Characteristics.

Equation (5), derived in the text of this report,

R
u.qza,KY.»/gc (PS'PB) (5)

| \//—r +(zkY.)? (ﬁ);%'

expresses m, the mass flow rate through a single feeding hole,

m
%

as a function of PS - PB’ the overall pressure drop over the feed-
ing region ( See. Fig. 1). Equation (5) contains three empirical
factors, KYl,r, and 22, which are to be determined by experiment.
The first of these to be determinied should be KYl’ the orifice co-
efficient. KY

1
terest discharge directly to ambient pressure and measuring the

should be evaluated by having the orifice of in-

mass flow rate vs PS - Pa where Ps is the upstream pressure for the

orifice and Pa is the ambient pressure. Values of KY1 would then be

calculated by means of equation (2) below

/5
n‘an = :.43o¢K>’,/gc (Ps‘B,) (2)

The values of KYl obtained should be correlated vs —5—5———. Values
s

of KYl should be determined for the whole range of mass flow rates

from near zero up to critical mass flow rate.

.. 2 )
To evaluate the coefficients r and z~ one should measure PS - PB vs m

for the test conditions to be enumerated later. Vglues of Ps - PB could
be measured with the same experimental equipment as was used previously
by NASA to measure pressure profiles in the AB-5 bearing i.e. the pressure
distribution curves measured April 11, 1962. It should be emphasized

that the pressure measurement sensing hole should be kept as small as
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possible i.e. 2 - 3 mils in diameter. By obtaining pressure profiles

in the vicinity of the bearing feeding holes one can obtain a qualitative
"picture' of the flow in the vicinity of the orifice as well as obtain

a value of PS - PB. Also, more importantly, one can compare the measured
pressure profiles with those analytically predicted by MTI analysis. This
should help to resolve the discrepancy between theory and ex

discussed on page 6a in the text.

The experimental conditions for which the pressure profiles should be

measured are as follows:

a/Ao - 0.10, 0.20, 0.40, 0.6,1.0
Ambient Pressure =~ Atmospheric

Mass Flow Rate - zero to critical (i.e. critical mass flow
through orifice)

One should note that, for a given orifice area a, each particular value
of the ratio a/Ao corresponds to a particular value of the bearing
clearance. Five different mass flow rate conditions should suffice to
cover the whole range of mass flow rates to be investigated, i.e.

five different mass flow rate measurements should be made for each

value of a/Ao.




